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NOTATION

" Cosfficionts roproscuiing edgo cotation and displacemunt per unit

adpe or surface load

Young's Motulus

Shelt thicknaay

Diacontinulty ahearing force normal to axia of symmetry
Diacontinuity boading momnent in & meridionsl plano
Hydrastatic oreazute

Discontinuity shearitg lofee normal to shell surface V
Radial distarce from axis of symmetiy

NI

Displacement perpendicular to axis of ahall

Ccoedinate takén along shell generator, mouaarad from juncture or
haso of cone

Cootdlnw,"j!e.kon along cone generator, weasured from apex of cone

Angle betwaen axis of cone and guaarator

4 /6 1= v OOJF;;
2,12
H‘ hl

Btrain

Poisson's ratio

Stress

/sgnotions defining hending motion of the shall

Axial rotation of Bac!l

__EA neyural rigidity of shelt

Ring dimensions associated with Figure 8
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ABSTRACT

A second approximation to the completo-throry for the axisymmetric
deformations of thin elastic conical shells, 2s derived by E. Meissner and
F. Dubois, is presented. This simplification of the exact differential equa-
tion leads to a so-called Geckeler-type approximation for conical shells,

From this approximation, a step-by-step numerical proceduré is de-
veloped for calculating stres«es and strains throughout the conical eiements
of shell structures. The methods intlnde computuation of the edge shearing
forces and bending moments whick arise from discentinuity effects at cone-
cone and cone-cylinder junctures, either with or without transverse rein-
forcing rings.

The range o(applicability of the approximation is also discussed,

INTRODUTION

Because of the ircreazingly frequeny use of conical shells in the pressure hulls of
submarines, a simplified procedure has been developed by whick: the elastic behavior of these
structural elements may be aasily computed, The method makes use of exponential and trigo-
nometric functions for determining the axisymmetric discontinuity stresses and strains at
either end of a truncated cone joined to another cone or to a cylinder with or without trans-
verse reinforcement at the intersection, or those at or near stiffeners on semi-infinite cones.
The analysis underlving this computctional procedure follows closely the Geckler approxi-
mation! to the more rigorous Love-Meissner equations of equilibrium for shells of revolution,2

The use of a Geckeler-type approximation for analyzing stresses in conical shells has
long been employed in the pressure-vessel industry, However, when design calculations for
steep conical transition sections on submarines were first required in 1951, it was not known
whether the approximation was sufficiently accurcte for the strength analysis of submarine
pressure hulls, A study of the exact Love-Meissner theory, as appiied to conical shells by
Dubois® and Watts and Burrows* showed it to be impracticable for reinforced cone-cylinder
intersections. There was then developed by Wenk and Taylor® a first approximation to the
complate theory which would facilitate analysis of reinforced junctures. These same authors
later presented a different form® of the exact solution and one from which the errors involved
in an approximate solution could be specifically evaluated, Their results included a state-
mont of edge coefficients for conical shells which provided a convenient method for analyzing
the ceinforced intersections at both the large and small ends of truncated cones, The results
published in TMB Reports 8265 and 9815 were evaluated experimentally and were found
valid.”

IRo(emcel are lzsted on page 32.



In a search for moro tupid methods of computation, n second approximation to tha rom.
plote theory which is essentially the Geckelor-type approximation for conical shells was ro-
vonsidered. For the geometries of interest to submarine designers this further approximation
was found to differ but little from the nore rigorous analyses, ¢ Also, as might bo expecter,
this Geckelorstype approximation was more reducible W a stej-by-step form of 2omputlation.
The nuinerical procedure resulting from this simplified analysis is presanted in this report.
Firat, equations for computing strosses and strains throughout a conical shell as a function
of edgo forcas and moments and the hydrostatic prossure loading are presented, Next, equa-
tions are provided for computing these edge forces and moments where the cone element is
joinod to another cor2 or cylinder, with cr without transverse roinforcement at the common
juncture, A numerice! example is then given in Appendix A showing in tabular form the
routino hy which stresses and straina may be computad for a structure composed of two cylin.
drical shells of differant diameters joined by a conical transition section and having rein-
forcing rings av uoth intersections.

The derivation of this second approximation to tho complate thoory for conical shells
and its justitication are presented in Appendix B, The formulas for strosses and strains re-

sulting from this analysis are derived in Appendix C,

GENERAL CONSIDERATIONS

In accordance with general methods for evaluating discontinuity stresses at shell inter.
sections, an unatiflened iruncated swction of cone, which is ussumed to have a length sufficient
that the houndary conditions at one and do not disturb membrane deformations at the other, is
isolated for study, Under pressure loading, the stresses and displecements everywhore in
the shell are the sum of the membrane terms and additional terms correspunding to discon.
tinuity shear and montent loads uniformly distributed on tho periphery of each boundary, These
discontinuity effects, considered to be axisymmetrical, depend on the contiguous atructure
to which the conical element is joined, They result linm the fact that the membrane defor.
mations which would oceur in each member, 8eparately, unde: preseurs loading are not iden-
tical so that the edges of the several elements theoretically would deform different amounts
and hence would not match, To enforce rompatibility of displacements and rotations of the
interse~ting elements such a discontinuity can be eliminated by the introduction of additicnal
forcoa and moments at the edges of each component shell. These, of course, must themselves
satisly oguilibrium conditions, The method is roadily applied to cone-cylinder xad cena-cone
junctures,

If transverse reinforcsment in the form of & ring stiffener is providad ut the intersection,
8 cofrespuiding anslysis ie made with the additional feature that compatibility of displace-
ments and rotations is required of beth the shell components and the stiffener at the common
juncture, As another spncial case, stresses near ring stiffeners in a reinforced conical shell

are obtnined simply by conaidering the large end of one semi-infinite cone joined to the amall




end of another semi-infinite cone of equa! &..»% 1:ls, with a transverse ring at thoir inter-
gection. In considering the reinforced-ir.orseciion problenm, it is first assumed that che stif-
fening rings are very nacrow and thin so that there 1» nractically line contact around the cir-
cumference at the common juncture of the three elements—the ring and the two axisymmetric
shells—and that the ring properties are concentrated on this line. However, if the inter-
section is reinforced by a heavy forged-ring type of stiffener with appreciable cross-sectional
dimension=, then the assumption of line concentration is no rongor valid, and the ansalysis is
extonded to include the effects of such finite width and depth upon the intersection defor-
mations,

Particular cases of composite structures such as these are discussed in further detail,
and final formulas for the discontinuity shears and moments are given in this report, The
analysis of composite structures including other components, such as spherical, elliptical,
end toroidal shells of revolution follows closely that described in this report, and sugges-

tions are given for extending the present results to such cases,

COMPUTATION OF STRESSES AND STRAINS

A thin-walled shell, such as a cono or a cylinder, develops only membrane stresses
and strains when loaded solely by uniform hydrostatic pressure provided that the cdges of the
shell are unrestrained. However, in reality the edges of such shall structures must be re-
stra’ned in some manner, i.e., attachment to other components or foundations or closures to
make them pressure-tight. In the vicinity of these restrained edges, local bending stresses
are developed in addition to the uniform membrane stresses. Formulas are presented herein
for determining the total stresses and strains which arise from the superposition of these
discontinuity and membrane effects,

The nomenclature and sign conven-

tions used in the analysis of a truncated Q:

conical shell are defined in Figure 1. These DR; / ';i

are applicable whathar the edge of the shell 2 f rl- &

under consideration is ths iarge- or small- | M

dismeter end of the cone, or the and of a cv- R; ™Y nd

of a truncated cone (either end) as the angle Symmeltry

. . e R L.\~
iinder, which is taken to be the limiting case Axis of l __,J,--.,..- “}\‘ | \S o

o, approaches zero. Note that z js the dis-

tance along the generator of the shell meas- . ’/:o
ured from the edge under consideration and LR
not the distance from the cone apex as in 4 Q
Reference 5.
A bending moment ¥, is considered posi- Figure 1 - Notation for Conical
tive if it tends to put tho cuter surface of the Shell Element
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shell in tonsion, and a shearing force H, is considered positive when it acts in » Jirection
away from the axis of symmetry. The transverse shearing force Q; i3 composed of tne rarial
shear component H; and the axial force pR./2, A hydrostatic pressure p is congidered positive
when it is external; for internal pressure p is negative. 'f'he subscript ; is used w d.stinguish
the structural elements {ram each other whero an intersection composed of two or more such
elements is being analyzed. A

The quantities H, and ¥, are discontinuity shears and moments arising from the inicr-
sections of various shell clements with each other and with siiffening rings, They may be
determined in terms of the shell geometry and elasticity and the surface loading by erforcing
conditions of force and moment equi!ibrium and continuity of radial displacei:ent and axial

rotation at the ju. ure,
) Once the aiscontinuity shears H; (or 9,) and moments ¥; are known, the following

formulas may ke used for determining the longitudinal and circumferential stresses and
strains in each shell elament as functions of the distance z from the shell edge under study:
Longitudinal stresses (the upper sign is for the externa! fiber and the lower sign for the in-

ternal fiber):

i}

R B; 9
g, =-——— + 2— M, tana, ¢+¢]

24, cosa, hl. 26,
(1]
v 8M, ;
t— - —¢
)’2 Bl'Ml

Circumferential stresses:

PR v v, Q;
——————(——)- (;b——-—-—o) tvo, (2]

1“. cos a; 2

g¢=~

Longitudinal strain (external fiber):

’
PR B,‘ Qi
€ =- ——— (1-2)+2 — (1- v} M, tan o VRS
2Eh cos a; Er;, | , 28, M,
: . (3]
+ i [F i F']v
2| YT b
Er? BN,
- 4

o Ay ot i 1 G .
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L.ongitudinal steain (intarnat fibor);

P’l‘ ll‘i . {"l 1
A e < (1= 42 = (=" W tana, [ e LR ]
i cova, - - KA ' WY, .
: (4]
v 7]
sl p,]
'I L f‘]a i
_ Circumterontial ateain (sll fibors throughout sholl thu-knosi);
: . .
PR B A [
G- (\ _._,)- G ‘] 15
Kb Cona, ;] ah? L B,
In theae expressjionn
oanta Ty
By --T-J-J(l =17 & L2HBY ‘/-:*m-'; for = » 0,3
/l" "l fl"ﬁ. .
(8l
and

U= ﬁ‘.‘!(l ~17) w 1.B1T84; for v = 0.3

E quations {11 through [8] are derivew in Appandix C,

1t should by notad that for a-oonical xhell the radius R variox linearly with the coordl.
nate distanco 2, L0, R = R, % & sin a; wharo the minus sign applies to the large end and tho
plus £ign to the smail end of a truncated cone. In the limiting oase as tho ha!l apex angle

o, » 0, Formulan(3}] through [8] ruduca to anslogeun axpreasions for a circular cylindrionl shell
for which oase the radius § now becomes a conatant,

The functions &, &, v 6, F,, Fy F,, snd F, used in computing the bending tetrma in
Equations (1] through [5) are defincd hy tha Injlowing:

o (BT, » PRl (coB iz + sin B2); @8 (Bz) = e~ B con A2

! w(Br) - p"ﬁ"(coa e - sin B2): ¢ (Bz) = ¢~B% ain Az 7}
1
! Fo o (Bay= B (1= M & (Arew J1211 = 07) 4 (Aa)
g Fy (Ba)= 281~y E(32)+w J12 (132 o (o)
i
j 5
3
2
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where the plus sigus apply to £ and F, and the minus signs to F, and F,; they are all functions
of the dimensionless variable 8z. These quantities computed for severai values of Bz are
given in Table 1 and represented graphically in Figures 2 and 3. It is seen that all the func-
tions approach zero as the quantity Sz becomes large, This indicates that the bending oro-
duced in the shell: by tho discontinuity forces and inoments is actually local and damps out
rapidly away from the loaded edg/e. In practice, it is convenient to choose values of 82 which
appear in I'able 1 so that interpolation will not be necessary. From these and with g8 com-
putad from Equation [6] che corresponding values of z can easily be found, and the stress and
strain distributions may tuen be detorminoc using Equations [ 1] through [5]. The procedure

-

for carrving out these computations is iliustrated in Apperndix A.

Functi~ns Defining Bending Action of Shell

TABLE 1

Bz| &

¥

e

¢

Fq

Fy

F,

[4

Fy

0 1 1.0000
0.1} 0.9307
0.2} 0.9651
0.3} 0.9267
0.4] 0.2784

1.0000
0.8100
0.6398
0.4888
0.3564

1,0000|
0.0907!
0.8024
.70
0.517¢

n
Al
0.1527
D

0.2610

£.451
52122
85037

35004
5.1494

0.9914
$.3858%
16838
1.8968
2.0372

-4.4686
-4.6062
-4.6351
-4.5752
-4.4428

0.5914
0.3995
-0.0928
-0,493¢
-0.8130

0.6 0.7628
0.8} 0.6354
L4 | 0.5083
L2 0.3899
i.41 0.2849

3.1431
-0.0053
-0.1108
-0.1718
-0.2011

0.4530,
8,315

0.1953

oG 1091

0.04:5

r.3090 }
SRTAY
.3005
PR B
i3t

4,508
5,460}
R
1 a%4%k
1.3562

2.1412
2.0702
1.8875
16408

13548

~4.0239
-3.4785
-2.8851
~2.2990
~1./5%

-1.2430
-1.44%%
-1.4933
-1.4244
-1.2853

0.1959
0.157¢
0.1234

0.0932

-0.20m
~0.2047
-0.1985
-0.1945
~0.1839

~0.0059
-0.0235
-0.0376
-0.0433
~0.0484

0.2ni8
0.1812
0.1518
0.1511
0.1415

-
S.63:  1.0960

0.6576

04770}

0.3958
0.3206

0.9651
0.8418
0.7821
0.7246

-1.2755
~1.0634
-0.8706
~0.7814
-0.6972

-1.1076
-1.0127
-0.9164
~-0.8679
~0.8206

L6

1.7

1.8
1 183t 0.1078

1.9

2.9 | 0.0667

2.2 | 0.024
2.6 |-0.0254
3.0 |-0.0423
3.4 |-0.0408

~0.1794
-0.1548
-0.1019
-0.0563
-0.0237

~0.0563
-0.0652
-0.0636
-0.0493
-0.0323

0.1230
0.0895
0.0333
0.0071
~0.0085

0.1364
~0.0203
«0.2397
~0.2868
~0.2463

0.6158
0.4241
0.1461
~0.0101
-0.0784

~0.542%
~0.5533

~0.2867
0.0377
0.1752
0.1

-0.7214

-0.272!
~0.0877
0.0144

4.0 -0.0258
5.0 |-0.0046
7.0 | 0.0013

0.0019
0.0084
0.0001

-0.0120
0.0019

0.0007

-0.0133
-0.0065

0.0006

~0.1390
~3.0168

0.0072-

-0.0878
-0.0336

0.1428
0.0334

0.0640
0.0374
~0.0026

DETERMINATION OF EDGE FORCES #, AND MOMENTS #,

The discontinuity forces snd moments which arise fiom a misinatch of membrane defor-
mations in intersecting shells may be determined from considersiions of force and momont
equilibrium and of compatibility of rotations and dieplacements of the edges of the component
shells at the common jancture. The unit ¢2ye rotations and displacements can be expressed
in terms of edge coefficients sugh as those delined and discussed in References 5 and 6.
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These edge coefficients are functions of the geometry and elasticity of the two intersecting
component shalls; they represent the amount of axial rotation and radial displacement per
unit edge bending moment, unit edge shearing force, and unit surface pressure. The total
rotation 4; and displacement w; of the edge for combined loading are then ohtained by super-

position, i.e.,

U;=a, M, + v, H, + c;p
(8]
wi=d, M, v g; Hi+ fip

wheie a;, by, ¢;, d;, f;, and g, are defined as the edge coefficients.

The method of using edge coefficienis is peneral and is very convenient in the analysis
of any composite structure, such as those encountered in pressure-vessel design. Here we
shall consider in detail the intersections of conical and cylindrical shells, a typical case of
which is shown schematically in Figure 4 with the discontinuity forces and moments acting
at the shell edges, anu treat particular cases of interest in the field of submarine pressure-

hull design.
L
i N
““““ I
T
[
R2
Axis of _ ‘ . _
Symmeiry "2'*
jz

Figure 4 - Notation for Cone-Cylinder Junture

CASE A: UNSTIFFENED lNToERSEC':'ION OF CONICAL AND CYLINDRICAL
SHELLS OF DIFFERENT THICKNESSES, SUBJECT TO EXTERNAL HYDRO-
STATIC PRESSURE

In this analysis of the intersection of two shells of revolution, it should bo recalled
that each component shell is assumed to be sufficiently long that the boundary conditions at
the far ends Jo not affect those at the common juncture.

When two such shells, identified by { = 1 and ¢ = 2, are joined together with no tzans-
verse reinforcement at their intersection, the discontinuity bending momeui and radial sheating
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where
U=%12 (1-.3

These edge coefficients are functions of the shell goometries and material properties
only'and are independent of the type of intersection. Since the coordinate z is measured from
the interseciion (Figure 4), the signs of the coefficients a;, b;, and ¢, differ from those given
in Reference 5 where z is measured from the cons apex. The upper signs in Equations [10]
and [11] apply to the large-diameter end of a cone, and tha Jewer ones to the small-diameter
end of a truncated cong. It should be noted that those terms in Equations [11] with alternate
signs vanish for a cylinder since aw= 0.

Thus, after the appropriate edge coefficients have been determined from Equations{11]
the edge moments and shears at the unreinforced intersaction of any combination of two cy-
lindrical or conical shells may be found from Equatinns [9] and {10].

For the particular case of the intersection of the large-diameter end of a truncated cone
(¢ = 1) with & cylinder (i = 2) of the same shell thickness (b, = A, = k), Equations [9] and [10]

reduce to the following:

psiﬁa\/Rlsh 3

\/8—‘0 (cos a + \/ccs o) U2i21 ccsa
v
PR, sina [ V2(1-=)(1-cosa) A
Hy =~ 1-
. N 1
2 (cosa + ,/cosa) Usine Rlcosa] 2 %
(12]
PRy
Qy=~H,08a +—— sina
2
where R, is the radius of the largsr oad {baso circle) of the cone, :

Another special case is that of the interse~ iun of che small-diameter end of a truncated
cone (% = 1) with a cylinder (i = 2) of the same shell t._ck.ess. Here, Equations [9] and [10]
become:
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p sin « \/Rl‘ ) [ o 34 ]
e r—————— .M
- 2

M = 1+
1
VB U (cosa +/cos a) U2R [ cos
v -
pRl'sinc Ve(l-=)(1-cosa) A
HIB 1+ 2 nnHzn—Qz [13]
2 (cosa +/cosa) Usina R {cosa
ot
Q1=H1003c-2.._1. sin o
§ 2
where R is the vadius of the smaller end (frustrum circte) of the cone.
CASE B: CONICAL CR C'n'LINDRJCAL SHELLS WITH CLAMPED EDGES,
SUBJECT TO EXTERNAL HYDRUSTATIC PRESSURE
When cone-cylinder intersections are reinforced by very heavy bulkheads, reesonably
accurate solutions may be obtafhed by ireating each component shell seperatoly and assuming
that the edges of each shell are rigidly fixed, i.e., zero radial displacement and zero rotation.
The resulting bending moments, radial shearing forces, and transverse shearing forces for
1 this case are, respectively, R '
3 o . :
pRA (1 --2-) 3p [ RA tan?a
3 4V,.' = :': ‘
U2 cosa v@_Uf’ Y cosa
] » o = v — ‘.:
PR Sphtana V2 2(1-3%) RA :
3 H=r——tana ¥ . + = 2 - . [14]
3 2 2U%cosa U ¢ ¥ ‘cosia
{ PR . :‘5
3 ¢=Hcosa +— 8in a
2 2 .
X o . : :
3 where the upper sign ia @ach expression together with R = R, spplies to the large-diamater §
3 end of a truncated cons and the lower sign together with R = Rl’ applies to the smsll-diameter ;
3 end. These same equetions may be used to determine the fixed-ended moment and shear for
% a cylindrical shell by setting a = 0. it shonid ba noted that the terms with alternative plus s
g and minus signs will vanish for the case of the cylinder, 3
%
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CASE C: INTERSECTION OF CONICAL AND CYLINDRICAL SHELLS REINFORCED
EY A STIFFENER OF FINITE RIGIDITY, SUBJECT TO EXTERNAL HYDROSTATIC
PRESSURE

A general composite structure, that of two intersecting cones covered under thia case,
p y ?

is stown schematically in Figure 5.

Axis of

Symmeiry /

Wigure 5 - Reinforced Cone-Cone Junciure

Particular cases of interest to the pressure-vecsel designer which are specializations
of :his somewhat »eneral case are: the reinforced intersection of the large-diameter end of a
cono with & cylinder, that of the small-diameter end of a truncated cone with another cylinder,
that of two cylinders, that of the large-diameter ends of two cones, and that of the small-
diameter ends of two truncated cones.

For all these casfas, the simplifying assamption is made that the two shell elements
and the reinforciag ring have line contect around the circumference at their common juncture.
A more refinad analysis including the effects of a finite-width intersection is presented in
the next section.

The discontinuity shears and moments acting on the edges of the two shell elements
identified by the subscripts { = 1 and ¢ = 2 as in Figure 5 may be detsmined by solving the
following set of four simuitaneous algebraic equations. These equations result from satis-
fving conditions of continuity of radial displacements and angular rotations of the three in-
torsecting elements at their common juncture, and force and moment equilibrivin,

} Ry Zo
dlul"'Kgl - ka)”lv- kaHz - =-f1p

R? Rr

R Ry
dz”z“’%”x_*(92’ka—)H2"fzp (15]

Rr Rr

/ Ro Ro
a, ""b"—) M1 + — ky M2+ ble m-c,P
\ R, B,
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i Rq
—k M, + ((12 —ch—> Myt bylly==c,p

R, g,
where
R? R
ka o ] kb 2
EFA, El,
and .1, is the cruss-sectional area of the ring stiffener,

! is the moment of inertia of the ring cross section about the radial axis through its
center of gravity,

1s the radius to the ceniar of gravity of the ring cross section from the axis of
symmetcy, and '

E is Young’s modulus for the ring material,
As has already been mentioned, the general Equations [15] may be applied to the rein-
forced intersection of any combination of two conical or cylindrical shells simply by computing

the appropriate edge coefficients (a,, a,, b,, b,,etc.) for each component shell from Equations

2’
{11]. The procedure for getting these coefficients is identical to that for the unreinforced in-
tersection problem, Case A. The transverse shearing fcrce Q; may be determined as before

from Equation [10].

CASE D: EFFECT OF A HEAVY FORGED-RING TYPE STIFFENER
UPON THE INTERSECTION DEFORMATIONS

In Case C where various reinforced intersections were considered, it 'vas assumed that
the stiffening rings were very narrow so that there was nractically line contact around the
circumference at the common jungture of the three elements—the ring and the two arisymmetric
shells, Consequently, the axiai rotations §; and radial displacements w; of the two compounent
shells and the stiffening ring were considercd to be equal at the common juncture, Thisis a
valid sgsumption provided the stiffening ring actually is very narrow as in the case of a deep
slender rectangular or **Tee" cross soction attached at the web as shown in Figure 5.

If, however, tie stiffening ring has a thick weh or a wide faying flange, or if the inter-
section irciudes a heavy forged ring as is common in submarine preasure-hull design, then
the juncture effectiveiv consists of the two shell edgos with a reinforcement of finite dimen-
gions between them; see Figure 6. Althcugh the lines of action of the axial membrane forces
cf tke component s«halla may intersect at a common point on the centzoidal z2-axis of the forged
ring and stiffener, eccentricities in the radial as well as in the axisl direction may arise where
the edges of the shells meet the forging. The effocts of these eccentricities on the discon-
tinuity moments and shearing forces, which may be significant, are taken into consideration
in the following extended analyais of the boundary conditions. Here, as before, any sorondary
bending of the juncture ring in the meridional plane is nejilected.
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Figure 6 - Notation for Reinforcement at Cone-Cvlinder Juncture
The new juncture conditions are as fcllows:

Torce and moment equilibrium require,

R, R, LA
H3 = — hl1 + — H2 +p(81 +82)—
R, R, R,
R, R, R, Ry P , (18]
=—MH —— M+ — S H, ~— 5 1)+ — (R, ~B (R, +R)
R, R, R, R, SR,
/ — (52 =82y —
1 2/
Rr
while continuity of struciure requires,
171 =B, + 80,
Gy =Ty 8,6y (17]
y=6.~-96,

where the rotation 0, and radial displacemant E3 of the juncture ring are given in Reference

5 to be
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’, R, &, R,

2 2 &y B, p 2
By = ky W, = ky ""h--—ﬂ;+_-%”;“fﬁﬂh‘;;m:‘MNM+Rﬁ

!

P ,"]
+e- (8~ 80—
L '

I,
A

& Ry Ry

iy ok Hywk oo My +— IIa A (AR ’

' R, . R R,
whate : .
Rl ! R/
&. i .nf’;‘ kl’ L
KA, . El,

from the elcmentary thm-riﬁg analysin, [eru 4, is the croas-sectional ares and /, ia the mo-
ment of initia about the a-axia +f tho composite reinfocuament shown shaded in Figure 4,
The 1otal rotetions and radial displacenents at tho odge of nach component shell for
: oonitined lnading 2o oblained by supemposition:

’1' ma M b e p

Rnd

§ ) wl-d"”l‘gl’}l"l’lp

T 119
Oy wughiy ¢ 6,04 0,p
1'52 mdyMy e gty s fyp

where the sdge coeflicients a,, 8, &, by, elc, are defined by Equationa [11] a= befare.
" The four continuity conditions [17] togethor with Equationa (18] and (18] lead tu the

fnflnwing avetiun of Ioyr simul?ancons alashesls covstions for the unknown & szoetinulty mo-

B
ments and shoars Hl, le, ”:' and ”2:

T By T
1—81 b'R— H|+Blkb—-—-.!fn+\yl—-ko-—-8] kb'—"‘ H‘

r Rr R, ’Rf
Ry R, ' #,
+(5189k"—"'kﬂ““')”z'["x*(‘sl""‘z)ku— 120
R, R, )

vy 5, Ry
h_hmprmﬂny+_k”ﬁ-g)—}p
8R 9 R

r
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R,

R

l 4

- ka *")/11
Rr

. 2 2 3
Loy, 2 sk, ), - [—-f2 (5,4 8k, —
R

\ R, R,/ r

82 82 R3
-k, (R, =R (Ry+ R - — k(82 -5y—|p
8R, 2

r

R, R, R, R,
Rf Rf R.’ Rf [20]

k, ky R,
= |-eptm— (R =R)(Ry+ R 4 (82 ~8])— | P
1 1 2 1

8fk, 2 R

r

Rl ‘ RZ Rl B2
ky— M, + (a,_~k,,__),442 + 8, ky — H (62—82 lc,,__)H2
R R, R R

r r r

ky ky R,
= [-cz-— (R, ~R) (R, +R))? -——(52 822)—-] P
L 8R, 2 R

Thus, for all the examples considered under Case C, if the reinforcing rings have fay-
ing webs or flangses of appreciablc wi2!h or i€ the intersection includes a heavy forged ring
as shown in Figure 5, Equations [20] should be used instead of [15]. Any contiguous piece
of shell material i contact with tha faying flange should be included when computing 4, ond
.

r

APPLICABILITY OF METHOD

The rarge of sppiicability of the metkods in this report was determined by comparing
the edge coefficients with those of the exact solution of Refereuce G. The expressions for
determining the edge forces and moments and tho viresses and strains are derived from the

L8
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transverse deflection function end its derivatives, The higher derivatives of w, et teast
through the third, will be as valid as w itself, since derivativa: up to tho third were used in
determining the coustants of integrution. Therefore, the accuracy of the cofputed stresses
and strains should be about equal to that of the deflection function. The edge coefficients
are found directly from w and its first derivative, evaluated at the shell edge (» = 0) so that
the errors in the entire analysis should be of the same urder of magnitude as those in the
edge coefficients.

The edge coefficients that follow from the anslysis of the report are almost identicali~
equal to those obtained by setting the special { functions, which appear as multiz!ying fac-

tors in ths coelficients of the exact solution of Reference 6, equal to urity, The exceptions -

are that the third terms in the equations for ¢; and f; are not present in the approximate co-
efficients of this report. llowever, these omitted terms are generally negligible compared to
the other terms if a is not nearly equal to #/2. An estimate of the maximum error in each of
the approximate edge cvefficients may be made in terms of the special { functions, appearing
in fteference 6, of the dimensionless parameter £, where

;/12 (1-v?) R2 cus?a
§=2

A2 sinta

If £ is restricted to values of 10 or more for a conical shell made of steet (v = 0.3), the maxi-
mum errot iu any one of the edge cocfficients computed irom Equation {11} of this report would
be about 10.5 percent for the large-diameter end and about 6.9 percent for the sinall-diameter
end of the cone, If £is resiricted to values of 20 or more, the maximum errors would be about
4 8 percent and 3.8 percent, respectively. The inequality £> 10 corresponds to

2R cusa
- > 1K
% sinla
and £ > 20 to
2R cos e
— >80
A sin?ea. T §

The ~nelyeis presented in this report is also based upon the assumption that the axi-
cymmetric shell eiements are of semi-infinite length so that there is no inieraction between
discgnﬁnuity forces and momerts erising at aljacent ends. From an examination of Figures
2 and 3 it can be seen that this condition is satified if 5, for eithe- end is greater than or
cgual to 3.0 (where ! is the length of sheil between discontinuities). If the value of 8,1 is
less than 8.0, then the discontinuity stresse:s and strains from each end will overlep through
a portion of the shell and they should then be superimposed. This linear superposition may

7
17




be done graphically 25 in the example of Appendix A.

The discontinuity bending moments and shearing forces which arise at the juncture of
any two shells of revolution may be found from Equations [¢], [15], or (20] providing the ap-
propriate edge coefficients for the compone -t shelis krs used, In Reference 2, Timoshenko
gives an approximate method for analyzing t! 3 strse:es in spherica! shells in which he sim-
plifies the problem by replacing the nerijon of th: shell noar the edge by n tangent conical
shell and, in turn, treating this.ay «n “equivalent cylinuer,” In this particular case, the
edge coefficients a;; b;, d;, and g, as given by Equation [11].can be used directly, but the
memb.ane (secend) terms of ¢, and f; for a spherical shell should be derived. Similarly, Equ-
ations [1] through {5]car bo used to compute the stresses and strains in such a shell excernt
that the membrane teefns appearing there, those terms containing the pressure p, should he re-
placed with those derived for a spherical shell, This same procedure for anzlyi.rg discon-
tinuity stresses may ba extended to any other shells of revolution, i.e., eliipsoidal, tori-
spherical, tori-conical, ptovided the slope and change in slope at the edges are not too great.

Although the results presented herein lead to # rapid method for computing elastic
stresses, which at the same time have besn verifiod b); experiment, no attempt is made in this
report to establish a criterion for ailowsble atress in design. The application of these results
to & design process is subject to the skij! and judgment of the engineering designer.
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APPENDIX A
NUMERITAL EXANPLE

The methods described herein for computing the edge moments and shearing forces and
the resulting stresses and strains in the vicini‘y of &n intersection roinforcod by a ring of
finite dimensions will be applied to a specific nodsl testod at the Taylor Model Fasin as an
illustration. ' This model consists of two cylindrical shells of different diameters joined by
a conical transition section. Both cone-cylinder intersections were reiniorced with sti‘fening

“tings of finite dimensions. The dinensions, including details of the cross section of the
large cone-cylinder intersection are shown in Figure 7.

:n=o.|25"

n hzoa0” .
? \§Q h=0092"
135" }

A=

"
A2
-

Figure 7 ~ Schematic Drawing of Illustrative Model

The analysis of the large-diameter intersection will be demonstratzd in detail. An ex-
amination of the cross section of the juncture shows the effective stiffening ring to have an
sppreciable width which is estimated to be 0.36 in. (including effective weld material); there-
fore, 8,=8, = 0.18 in. The radii of the two shells at the juncture and the radius to the neutral
axis cf ' .ing are very nearly equcl so it is rssumed that

E, R, R

220 o
R, R, R,
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The moments and shearing forces, My» Mg, Hy, and ", will be determined from Equ-
ations [20). The subscript ““1"* willbe assigned to the cone, and ‘2" to the cylinder. Note
that every term in Equation [20] contains Young's modulus E in the denominator, Since all
the component paris of the jurcture are made of the same material (stoel, for which £ = 30 x
100 psi), all equations may be multiplied by £ to simplify the computation. Edge coefficients
(multiplied by E) are first computed for both shells from Equations [11]. Then the cross-

sectional area 4, and moment of inertia /_(about axis z - z) of the effective ring are computed,

and the quantities £k, and £k, are determined from Kquations {18]. The values thus deter-
mined are substituted into Equations [20] which are then solved numerically, giving:

My = 2.18056

M,= 0.739266 )
H, = -5.69747 '
H,= 2.27055
From Equation [10]:
Q,= 2.99004

Q,= H,=2.27055

Note that a large number :‘:f significant figures are carried her> =24 in the following calcula-

tions. This is believed necessiry because of the many nume. i i operations that are performed

on each quantity.

With these values for ¥,, M,, @, and @, and the geometric and material properties of
the shells, the stresses and cirains in the large cylinder and in the cone as the result of the
discontinuities arising from the juncture with the stiffening ring may be determined from Equ-
ations [1] through [5]. Membrane stresses and strains (due to pressure alone) are includad in
these expressions. When all those stresses and strains are to be found for a large number of
values of 2, the computations are rather tedious, so a calculation sheet has been devised
which facilitates the work somewhat. This shest, filled in for the large-diameter end of ihe
cone of the model under discussion, is shown in Table Z. 'The numbers and expressicns in
bold-fsce type are permanent figures on the sheet. Similar calculation sheets for the large-
siameter cylinder, the small-diameter cylinder and the smsall-diameter end of the cone are re-
ouircd to obtain a complete stress and strain distribution. Wote that on tho sample calcula-
tion shoct the procedure was not derived from Equations [1] through [5], but directly from the
expressions appearing in Appendix C. This aaounts to an algebraic rearrangement of Equ-
tions (1} through (5] which was found more advantageous in cases where a large number of
calculations ere required for all the stresses and strains,

The circumferential strain distribution as a function of distance from each intersection
are shown as solid lines for the two cylinder components and as broken lines for the cone in
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Figurc 8. The circumferential mambrane distribution for the cone, represented by the first

W R aR i e T

term of Equation (5], is also shown. It is seen that the discontinuity effecte from hath intar.
sections exist throughout most of the conical shell and overlap with each other, that is, the

o

circumforontial discontinuity strains indicated by the broken curves differ from the membrane
s*rain throughout a large portion of the cone. The total circumferential strain at any point in
the conical shell then is the algebraic sum of the discontinuity strains from both intersections

and the membrane strain. This superposition was done graphically in Figure 8 and the result-
ing distrihution is shown as the solid line labeled B roens” The broken-line curve labeled 1
ot al

was found from the analysis of the largre erd of the cone and that laboled 2 from the analysis
of the small end. The difference between the ordinates of curve 2 and the membrane line

ware then added to those of curve 1 to obtain e .
¢Totd

A similar procedure was followed in determining the disiribution of longitudinal strain

on both the external and internal surfaces of the shell slements. The lcngitudinal strain dis-
tributicnc for this exé.mp'e are shown in Figure 9. For clsrity of the curves, the component
straing (strains from each intersection and the membranc distributior;) are not shown, Noto
that the total strains and also stresses thus found are for an external pressure of 1 psi; i.e.,
they are essentially strain and stress sensitivity distributions,

The technique indicated by the results of Figures 8 and 8 of this report for linearly
superposing the discontinuity and membrane effects can be used for short shells provided the
length I between adjacent edgesis such that 8, > 3.0; this has already been discussed under
‘‘Applicability of Method.” For cases where 3,1 < 3.0 the discontinuity forces and moments
at one edge of the shell may influence those at an adjacent edge and vice versa, so that in
such instances this method of superposition may still be used but the resulting distributions
would be questionable. An enalysis which considers this interaction and which may prove
convenient in practical application is given in Refercnce 8.

Experimental strain data have also been plotted on Figures 8 and 9 for comparison with
the theoretical distributions detemmined by the analysis givon horein, It is seen from these

| S TR | LRI ¥ GRS Dot e e o = e S

plots that the agreement between theory aud experiment for this particular cuzo is very good
and cettainly falls within the limits of experimentai error. The agreement is considered for-

SUPTET L L

B i P

teitous, and this one example does not constitute any extensive verification of the simplified
cona analysis presented. This model is one of a series of gix such models which have al-
ready been tested at the Taylor Model Dasin. The experimental strain data obtained from the
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complete program will be used to check furtiier the validity of the simplified cone analysis ) i
dsveloped in this report. These additionai resuits will be forthcoming in & Taylor Modei Lx
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APPENDIX 3
GECKELER APPROXIMATION FOR CONICAL SHELLS

From considersations of equilibrium of a shell eiement, Dubois3 established by stand-
ard elastic analysis an expression for the transverse displacement w of a thin conical shell

in terms of a fourth-order differential equation. The homogeneous form of this equation is

d4w 3w d?w 12 (1~ v?)
yz-—-+2y ."2 + @®w=0 (B.1]
dg'/:’ ay’® dy? k% tanla

where ¥ is the meridional distance along a cone element measured from the apex.

Solutions of Equation [B.1] are considered to be very accurate but usually require far
too much computational time to be practical. Hence, resort is often mada to approximate
methods ot the type discussed below. Taylor and Wenk in Reference 8 have found solutions
to the complste Equation [B.1] in terms of Bessel functions of the first and second kind, both
of second order,

The radius R for any point on the cone is (Figure 1)

R=ysina [B.2]

If the ¥’s, which are coefficients of the derivatives in Equation |B.1], are eliminated by using
(B.2], and if [B.1]is then multiplied by sin?a , the following results:

d*w d3w a2y 12 (1 - v?) cos?a
R? + 28 —-sing -2 — sin?x + w=0 {B.3]
dy‘ dy3 dyz p2 ¢ i

It has been shown in Reference 5 by order-of-magnitude considerations that, for the range of
parametors of interest to pressure-vessel designers,

a4l b dcw d?w ' 2 dw
R? ey 28.——3 sina >> 2"—2- sinZa > | ——.-sinda | [B.4]
y dy mex d:y max | E dy .max

i.e., the second- and third-order terms.appearing in the complete Equation [B.3] may be. neg-
lected in comparison with the fourth-order;one. “Wénk and Taylor in Reference § carcied out
the first approximation, that of negtecting the secor'd-order term only, and obtained & solution
for the transverse displacement w in termg of Bessel funcnons of the first and second kind,
both of zero order, They indicate that from the mequahtxes LB } the ongmal d;fxerennal equs-
‘ion could be further simplified if the third-order term is also fieglected. The analysis of the
pressnt raport is based on this sec&nd*ﬁ?proxirﬁat;oh. ‘

Further, the discontinuity bending stresses are very local and-damp out rapidly away
from the juncture region of ‘any two intersecting shells, Hence it is sufficiently accurate to

&
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treat the radius R appearing in Equation [B.3] .as constant and equal to R, the radius at the
edge of the component shell, in determining these local effects. Geckeler? proposed approxi-
matioas of this type in dealing with such local bending effects in thin shells; thus the so-
called ‘‘Gerckeler approximation'’ for conical shells reduces to the integration of the equation:

dfw 12 (1 - v?) cos?a

+ — w=0 [B.5] ,
4 2
ay AR
As may be seen from Figure 1, the distance z from the juncture edge of the cone to an .
achitrary point on its surface is
z=y, -y C : ' (B.6)

where y, is the slant heigﬁ of the cone, Further, if we define

3 (1 ~v?) cos?a

B‘ - [8.7]
2p 2
AR
Equation [B.5] may then be rewritter in the form
dw
+ 484w =0 (B.8]
dzt

It should be noted that Equation [B.8] is identical in form to the homogeneous differencial
equation which governs the axisymmetric transverse bending displacements (and therefore the
stresses) of a cylindrical shell as given on page 392 of Refercnce 2. For this reason the
Geckeler approximation is sometimes roferred o as the ‘‘equivalent cylinder’ approxiniation,
It is further noted that as the cone degenerates to a cylinder, i.e., a + 0, Equations {B.7] and
[B.8] reduce exrctly to those for a cylindst.
1t should be emphas:zed that such so-called *‘approximate’® methods are schemes to

obtain simpler soiutions to the exact Love-Meiasner equations for the bending of shells. The T
membrane solutions for conical shells, which depend upon the loading and are particular in- :
tegrals of the complete equation with a nonzero right-hand side, are very simple for the case -
of hydrostatic pressure loading; they should always be used with wither the exact or the ap-
proximate bending soiutions when the cone angle is not nearly equal to zero, i.e., ¢ > 8 deg.
When the angle a is very nearly equal to zero, the radius £ +aries only slightly so that the
mambrane solution for a cylindrical chell is sufficiently accurats for superpnsition with a

.

0

banding effect.
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APPENDIX C

DERIVATION OF THE STRESS AND STRAIN EXPRESSIONS,
- EQUATIONS {11 THROUGH (5]

The stresses devoloped in the shell are given by

N, BM,
g, =— &
A A2 )
[C.1]
o =_Nﬁ + -6_’iy.6.
¢ TR

where the upper sign is used for the outer fiber and the lower one for the inner fiber; this =ign

convention is retained throughout this appendix. The first expression of [C.1] is the totul

longitudinal or meridional stress given as the sum of the meridional compressive component*
and the meridional bending component. The second expression is the total circumferential or
hoop stress given as the sum of the hoop compressive component* and the hoop bending com-

ponent.
The corresponding strains are determined from the two-dimensional Hooke's law to be

1 1 oM, 5
€ =— (o, -vo,) = — (N -uvN, + T 'v—--)
R AT U S A
[C.2]
1 1 6M 8k,
€ =— (o —w)--———(N -vWN_+ —F v )
L N U B/

The complete expressions for the stress couples and siress resultants pertaining to an
axisymmetiic conical shell are given in Reference 5. In terms of the sign convention of the
present report these are

d?w v sina dw
Mx=D( - )
dz? R dz

[C.3]

M¢=D(V —_— -

d2w sina du )
V@ R de

d3w  sine d2yw  sin2a du )

mofon e

dz3 R dx? R® 4=

*Teasile if Nx' N & are positive,
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- d ! a? Pl? .
N¢=---..( —Q, tana) - ;

dz \ sina cosa %

Rodty d*w  sina 4?w  sinla duw p R

=D tena k -2 - - ) - #

sina dz* de* R dz? R? de cosa

*

R (C.3] i

b

N, =@, tana -

2 cosa §

3 o

A

where the flexural rigidity p = ————o, 8
' 12 (1- %) ;

. is the moment in a meridional plane,
M¢ is the moment in a transverse planc,
kX

§

Q, 1is the transverse shearing force, k
Ny is the stress resultant in tho ¢-direction, E:
N_ is the stress resultant in tl}e z-direction, and ﬁ‘.

p is the external hydrostatic pressure (replace p by —p for internal pressure).

It should be noted that the terms containing p in Equations [C.3] are the membrane stress re-
sultants obtained from membrane analysis for hydrostatic pressure loading.

From the same order-of-magnitude considerations as those used ir Appendix B to de-
rive Bauation [C.8], it can be seen that the following approximate stress couples and stress

resultants should be of sufficient accuracy:

e MU AR el

d2 w i3

M, = D— 4
da?
L [C.4] 5

My =@, tana - L :
R dYw R

NQS = D - p :
COSY gpt ~ cosa 3
RQy=~D— %
d:):s :

It will uow be shown that another term should be included in the expression for ¥ é
given by [C.4]. From Hooke’s law [C.2] and the geometry of deformation it is seen that
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1 N N ) ©
— - Y, = € = - ——
gn ° " ° p
;
'so that
Eh _
Ng==— L+ N, (C.5]
R
Ry superposition,
E = Ebending + wmc:mbrane
i.e.,
T, ¢ pR: () ¥ [C.6)
T =w, COSA + = -— .
b EhL cosa 2

where w, is that part of the transverse displacement w exclusive of the membrane component.
If Equation [C.6] is evalvated at the shell edge z = 0, the edge coefficients, 2, g, and f are
obtained; see Equation [8]. The edge coefficients so derived differ only siightly from those
given in Reference 6 which are believed to be exact.

If N from Equations [C.4] .and  as given by [C.€] are substituted into [C.5], then

-Eh
R cos a

+ ny tan o [0'7]

Further, if v, is deteunined frofh Equation [B.8] and substituted into (C.7], then

;

R d%w . pR
Ny =D 2 ox g, tana (C.8]
cosa dzt ’ '

With the stress resultants ¥ _, qu @, t;‘nd the stress couples ¥ _ and M¢S thus deter-

| ;

mined, Rquations [C.4] and [C.8], the expressions {or the shell straszcs v, end o hacome:
PR D d3 v 6D d2w

: 0, =~ ——— - — tana £ — [C.9]

2k cosa & dz3 K2 gz?

PR D R d'w d3w  6uwD d?
74 == ! +_'... i D tanwo + Y i (C.10]
hcosa h cosa dzt & dz3 AY dx?

¥
%
i
a3
3
b
3
3
3
o
.k
b
1
%

To express these stresses in terms of the edge and surface icadings and also the goomstric
and elastic properties of the shell, '-3xpras'sions for the deflection w and its various deriva-
iives must be found. This is done by integrating the differential Equstion [B.8). The seiu-

tion of this homogeneous diffsrential equation is
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w = e B* (c, cos Bz + ¢, sin Bz) + eBx {c, cos Bz +c, sin 8z)

where the constants of integration ¢, €5, €3
ditions
w-+)atzr -+ oo

M, =M atz=0

Q,=Q;atz=0

where M, and ¢, are the edge bending moment and shearing force, respectively. The first of

these conditions requires that

c3=c‘-0

When the second and third conditions are satisfied,

el (- +8M)
2pg3

¢y

M,

14

Co B =

2 opg?

With these values for the constants, the solution for w becimes:

W =

o Bx [(— Q;+ BM,) cos Bz - BM; sin B-’t]

2083
/

Successive derivatives of this deflection function are:

-

o

dw  ePET '
— = ere— |~ — (8in Bz + COS BZ) + BM; cos Oz
dz  DE4 oL@

d*w Piid

- ——m L- Q; sin gz + BM;(cos Bz + sin BZ)]
D3

dz?

-

a3 P [ . _
@ = —— | Q; (cos Bz - sin Bz) + 28M, sin Bz

d23 D [

1

]
4, ~Bx

_‘f_c s E:.__.. {2Q:‘ cos Bz -23M (cos 8z - sinBz)]

dz* D

30

1C.11]

and c, ere determined from the houmujasy con-

(C.12}

[C.13)

(C.14]

[C.15}

(C.16]

1C.17]

PRSI A
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Substitution of Equations [C.17] into [C.9] and [C.10] uiv. - ‘ur the stresses,

PR 28 Q;
o, == +— M, tana eB= (cus Bz - sin 3x) + e~B* sin Bz
2k cosa A g, .
GER Q [C.18]
+— {e"B’ (cos Bz + sin 3z) -~——- 27B¥ sin Bz-] ,

h2 ,{:-"i‘: B

PR vy 2Rp? i Q;
04 == (1-—-) - M i ¢ B% (cos R~ - sin Bz) - — e~B% cos Ba|t VO,
k cosa 2 h cosa L 8M,
[C.19]

Therefore, Equations [C.18] and [C.19] for the stresses are identical with Equations [1] and

[2], respectively, if the functions ¢ (B82), ¢ (B8z), ¢ (Bz) and ¢(Bz) as defined by Fouations
{7] are substituted therein.

To derive Equations [3], [4], and [5] for the strain distributions it is merely necessary
to substitute Equations (C.1R8] and [C. 18] into the two-dimensional Hooke’s law, Equation
[C.2]), which expresses the strains ¢, and € in terms of the stresses,
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